
ESCS logging subsystem

author: Marco Bartolini

16 maggio 2013

draft number: 3

IRA-INAF Medicina Radiotelescopes Via Fiorentina 3508/B 40059 Medicina BO Italia T +390516965811 F +390516965810
mbartolini@med.ira.inaf.it http://www.med.ira.inaf.it

http://www.med.ira.inaf.it
http://www.med.ira.inaf.it

Index
1. Logging
 3

1.1 Logging in ESCS
 3

2. Project structure
 3

2.1 Custom Logging macros
 4

2.1.1 Affected files
 4

2.1.2 Architecture
 4

2.2 CustomLogger ACS Component
 5

2.2.1 Affected files
 5

2.2.2 Component configuration
 6

2.2.3 IDL definitions
 6

2.2.4 The Server
 8

2.2.5 The logging queue
 11

2.2.6 Component lifecycle
 11

2.2.7 Log Files formats
 12

2.2.8 CustomLogger UML class diagram
 14

2.3 Python Logging
 15

2.3.1 Affected files
 15

2.3.2 Custom Python Logger
 15

2.3.2 Proposed ACS patch
 15

2.3.3 Default python logger usage
 16

3. Logging Client
 16

3.1 Affected files
 17

3.2 Usage
 17

4. Logging utilization guidelines
 18

4.1 Log Message Format
 19

ESCS logging
 1

ESCS logging
 2

1. Logging
Logging is a fundamental component in a complex software system and ESCS is no exception. Many

times in software development, a good project phase is not enough to know how the system will

behave in every possible condition and every software hides some subtle bug or misbehavior which

simply cannot be detected at code or compile time. Thus the need for logging what happens at

runtime, logging is essential for:

• Development. Logging at the DEBUG level will enable the developer to inspect every single event in
the system during its development in the effort of coding error free software.

• Post failure diagnostics. Logging will enable the diagnostic of the root cause of a runtime error and

successive code modification.

• System Monitoring. Logging is one effective way to monitor system health at runtime and to give

users and administrator an immediate feedback of what is happening under the hood.

1.1 Logging in ESCS
The ACS software system already contains a logging module so why do we need to develop a

custom software component? First of all the ACS logging system as of version 8.2 is confused and

spread between different versions and conventions and it is not easy to understand, it also does not

ease the life of developers keeping them away from its usage. A second reason is that we need

somehow to differentiate between the ACS system log messages and the log messages produced

within the code we have written at IRA, at least for debugging purposes. A final reason is that we

want to automate the logging setup at ACS start writing server components which will log only our

custom messages.

2. Project structure
Many software modules have been developed in order to enable a custom logging system, and we

wanna first have an overview of what happens at a higher level of abstraction.

In the diagram below green blocks represent the software components we have developed while pink

ones represent what was present in the original ACS system. As you can see we first publish every
log event to the ACS Logging Channel, mixing IRA and ACS events. This enables us to use ACS code

in an effective way and ACS tools can be used to take in exam also our custom logging messages.

Every log record is then captured and filtered by the IRA custom logger which implements its own

ESCS logging
 3

logics (i.e. write to file ...) while republishing our custom events to a separate channel for further

elaboration and presentation to the user.

2.1 Custom Logging macros

2.1.1 Affected files
• Common/Libraries/IRALibrary/include/CustomLoggerUtils.h

• Common/Libraries/IRALibrary/src/CustomLoggerUtils.cpp

2.1.2 Architecture
We first have to look at where log messages are generated. Where we used to have ACS_LOG

macros we redefined our own CUSTOM_LOG macros to be used in IRA produced code. The effect of

the macro is that of adding a Key->Value data pair in the log message XML structure identifying our

IRA generated events. Macros are defined in Common/Libraries/IRALibrary/include/
CustomLoggerUtils.h and are:

• CUSTOM_LOG replaces the ACS LOG macro with identical signature.

• CUSTOM_STATIC_LOG is used for logging from a static context.

• CUSTOM_EXCPT_LOG is used for logging an exception event.

A typical usage in our code will be something like:

#include <IRA> //or only #include <CustomLoggerUtils.h>

//...
/** MyComponent.cpp - log message with ALERT level **/
//...

ACS System

Code

IRA code

ACS Logging

Channel

IRA Custom

Logger

IRA Custom

Logging Channel

ESCS logging
 4

CUSTOM_LOG(LM_FULL_INFO, "MyModule::MyClass::MyMethod", (LM_ALERT, "My log
message"));

Which will result in a log message like this to be published on the acs logging channel:

<Alert TimeStamp="2012-06-12T08:38:01.334" Routine="MyModule::MyClass::MyMethod"
SourceObject="MANAGEMENT/CustomLogger"><![CDATA[My Log message]]><Data
Name="source"><![CDATA[custom]]></Data></Alert>

Where the underlined xml text is what has been added by our macro with respect to the ACS logging

macro.

Note that we can still use ACS defined log levels at this point, that’s because custom logging events

are created as particular ACS log events with some added data. This permits us to publish custom

events on the ACS logging channel as defined at ACS startup and will result in minor impact on

already written IRA code base, that will have to be changed only in the macro names.

2.2 CustomLogger ACS Component
Most of the custom logging logic resides in the CustomLoggerImpl ACS component and we will

examine it starting from its idl definitions and xml configuration.

2.2.1 Affected files
• Common/Interfaces/ManagmentInterfaces/idl/CustomLogger.midl

• Common/Interfaces/ManagmentInterfaces/idl/ManagementDefinitions.midl

• Common/Servers/CustomLogger/include/CustomLoggerImpl.h

• Common/Servers/CustomLogger/include/expat_log_parsing.h

• Common/Servers/CustomLogger/src/CustomLoggerImpl.cpp

• Common/Servers/CustomLogger/src/expat_log_parsing.cpp

• Common/Servers/CustomLogger/config/CDB/schemas/CustomLogger.xsd

• /system/configuration/CDB/alma/MANAGEMENT/CustomLogger/CustomLogger.xml

ESCS logging
 5

2.2.2 Component configuration
Static parameters are defined at the component level and stored in the CDB as xml files, the schema

specifies some important attributes to be defined:

<xs:attribute name="DefaultACSLogDir" type="xs:string" use="required" />
<xs:attribute name="DefaultACSLogFile" type="xs:string" use="required" />
<xs:attribute name="DefaultCustomLogDir" type="xs:string" use="required" />
<xs:attribute name="DefaultCustomLogFile" type="xs:string" use="required" />
<xs:attribute name="LogMaxAgeMillis" type="xs:long" use="required" />

Where the default directories must be defined as absolute paths to directories where custom log files

will be saved. The filenames must be specified in the corresponding xml attributes. LogMaxAgeMillis

specifies how long each record will be stored in memory before being broadcast to the logger, this

behaviour permits to sort the notifications received from different components at different times before

writing to file.

2.2.3 IDL definitions
The component is defined in the Management subsystem and the relative definitions can be found in

Common/Interfaces/ManagmentInterfaces/idl/CustomLogger.midl - ManagementDefinitions.midl in

particular, in the definitions we redefine the log levels based on a new LogLevel enumeration which will

substitute the ACS naming scheme in our log records:

 /**
 * Log level definitions for ACS custom logging utilization
 */
 enum LogLevel{
 C_TRACE,
 C_DEBUG,
 C_INFO,
 C_NOTICE,
 C_WARNING,
 C_ERROR,
 C_CRITICAL,
 C_ALERT,
 C_EMERGENCY
 };

 ACS_ENUM(LogLevel);

While this is how the server interface is defined:

 /**
 * Component which automatizes the logging functionalities in ACS.

ESCS logging
 6

 * This component is designed to intercept log messages and direct those to
 3 different outputs:

 * 1) Custom logging events, identified by the extra data source=custom,
 are written to a file in an abbreviated form only including the
 timestamp, the log level and the log message.

 * 2) All logging events are written to a sytem log file as xml ACS
 LogRecords, these include all ACS inormations.

 * 3) Custom logging events are further redirected to a CUSTOM LOGGING
 CHANNEL for client immediate notification.

 */
 interface CustomLogger: ACS::CharacteristicComponent
 {
 /**
 * Filename of the custom logging file where only custom events

will be written.
 */
 readonly attribute ACS::ROstring filename;
 /**
 * Number of custom logging events received
 */
 readonly attribute ACS::ROlong nevents;
 /**
 * True if logging functionalities are active
 */
 readonly attribute ROTBoolean isLogging;
 /**
 * Minimum log level for filtered log messages
 */
 readonly attribute ROLogLevel minLevel;
 /**
 * Maximum log level for filtered log messages
 */
 readonly attribute ROLogLevel maxLevel;
 /**
 * Close the actual log files and open two new ones for logging.
 * Tries to create the necessary directory.
 * @param base_path_log: the directory name for the custom log file
 * @param base_path_full_log: the directory name for the full log

file
 * @param filename_log: the file name for the custom log file
 * @param filename_full_log: the file name for the full log file
 */
 void setLogfile(in string base_path_log,
 in string base_path_full_log,
 in string filename_log,
 in string filename_full_log) raises

 (ManagementErrors::ManagementErrorsEx);
 /**
 * Emits a custom logging message. Used mainly for debugging and

testing purposes.
 * @param msg: the logging message
 * @param level: the logging level
 */
 void emitLog(in string msg, in LogLevel level);
 /**
 * Emits a custom logging message from a static context. Used

mainly for debugging and testing purposes.
 * @param msg: the logging message
 * @param level: the logging level
 */
 void emitStaticLog(in string msg, in LogLevel level);
 /**

ESCS logging
 7

 * Emits a new Exception with two levels backtrace and logs it.
 * Used for debug and testing.
 */
 void emitExceptionLog();
 /**
 * Close the actual log files and stops logging. Flushes all

 buffers.
 */
 void closeLogfile() raises (ManagementErrors::ManagementErrorsEx);
 /**
 * Set the minimum logging level to be included in custom log files
 * @param level: the logging level
 */
 void setMinLevel(in LogLevel level);
 /**
 * Set the maximum level to be included in custom log files
 * @param level: the logging level
 */
 void setMaxLevel(in LogLevel level);
 /**
 * Flushes the log events queued by the LoggingProxy and writes to
 * custom log files
 */
 void flush();
 };

2.2.4 The Server
Server component logics are defined in Common/Servers/CustomLogger/

The CustomLoggerImpl basically subscribes to the ACS logging channel using a
StructuredPushConsumer and receives all the StructuredEvents published on the channel. Note that

at this point we receive both ACS and CUSTOM log records on the same channel. Every event is than

treated as an xml string and parsed using the expat libraries using the functions defined in

expat_log_parsing.h .

A new LogRecord object is thus created according to the RAII (Resource Acquisition Is Initialization)

pattern by which we store LogRecords using boost::shared_ptr objects upon creation, which relieves

the developer from memory management issues.

/**
 * Class used to represent a log record and the necessary information
 * to be stored during the xml parsing. These two have been packed for conveniently
 * make use of expat parsing primitives which accept one only structure as user

data.
 * Attributes marked as _ are to be intended as XML accessories.
 * @TODO LogRecord informations should be decoupled from xml parsing structures.
 */
class LogRecord
{
public:
 /**

ESCS logging
 8

 * Constructor
 */
 LogRecord();
 virtual ~LogRecord();
 /**
 * The log level of this record.
 */
 Management::LogLevel log_level;
 std::string log_level_name, message, process_name, _element, xml_text,

_data_name;
 /**
 * the timestamp of the logging event, extracted from the ACSLogRecord.
 */
 ACS::Time timestamp;
 /**
 * Key-Value couples of extra data tied to the log record.
 */
 KVMap kwargs;
 bool _initialized, _parsing_message_cdata, _parsing_data_cdata, _finished;
 int _depth;
 /**
 * Adds a Key-Value pair to the log record.
 * @param key the key string.
 * @param val the value string.
 */
 void add_data(std::string key, std::string val);
 /**
 * Reads a Key-Value pair from the record.
 * @param key the key string .
 * @return the associated value if key is found, NULL otherwise.
 */
 std::string get_data(std::string key);
};

The LogRecord is than handled by the server which writes the ACS system log file and forwards the
LogRecord to the LoggingQueue and to the CUSTOM_LOGGING_CHANNEL. At this point we can

note that each event is written to the ACS system log file with all of its informations, this is intended for

administration purposes so that ACS system administrators and developers have a place where every

detail is stored for debugging and management purposes. This file would be overkill for end users,

that’s why CUSTOM events are defined so that we can filter what is propagated up to the end user’s

view.

ESCS logging
 9

Custom log messages are recognized by the filter method of CustomLoggerImpl class which

searches for the key->value pair “source = custom” in the LogRecord’s kwmap.

 /**
 * Filter the log records.
 * This filter shuold return true for all the messages produced by custom logging

* functions and false for every ACS system log record.
 * @return True if the log record is a custom one.
 */
 virtual bool filter(LogRecord& log_record);

CUSTOM_LOGGING_CHANNEL is an ACS notification channel to which everyone can subscribe in

order to receive the events in an unsorted and rough way, messages are sorted according to their

timestamp only in the logging queue while previously we have no guarantee on the reception order.

/**
 * Structure used to transmit Logging events through the CUSTOM LOGGING CHANNEL
 * It's similar to an ACS Log Record but has been defined for our purposes.
 */

ESCS logging
 10

typedef struct CustomLoggingData
{
 ACS::Time timeStamp;
 LogLevel level;
 string msg;
 } TCustomLoggingData;

 const string CUSTOM_LOGGING_CHANNEL_NAME = "CUSTOM_LOGGING_CHANNEL";

2.2.5 The logging queue
LogRecord generated by IRA logging macros are added into a LoggingQueue which is defined in

expat_log_parsing.h as:

typedef std::priority_queue<LogRecord_sp, std::vector<LogRecord_sp>,
LogRecordComparator> LogRecordQueue;

Here LogRecords are ordered according to their timestamp attribute. A thread defined in the

CustomLogWriterThread class consumes the queue accessing periodically at the head and checking

the age of each log record. LogRecords older than a configurable age are popped from the queue

and written to the custom log file. This technique permits to force a partial ordering of the log records

within a certain amount of delayed reception which can be caused by the distributed architecture of

the control system and by the different settings of components and containers. The maximum age

after which logs are dumped to file is configured in /system/configuration/CDB/alma/MANAGEMENT/

CustomLogger/CustomLogger.xml together with other default parameters such as the log file names

and paths.

2.2.6 Component lifecycle
We try to summarize the component lifecycle in the following list:

1.CustomLogger is loaded within the LoggerContainer

2.Upon initialization:

2.1.subscribe to the ACS_LOGGING_CHANNEL

2.2.initialize the expat XML parser

2.3.Create the log writer thread

2.4.create the CUSTOM_LOGGING_CHANNEL for output

2.5.open the default log files

3.Upon execution:

3.1.starts the log writer thread

4.On each StructuredEvent received on the ACS_LOGGING_CHANNEL

ESCS logging
 11

4.1.convert the event into a LogRecord object using the XML parser

4.2.write the xml log record to the system log file
4.3.filter the log file, and if it’s the case:

4.3.1.publish the LogRecord to the CUSTOM_LOGGING_CHANNEL

4.3.2.add the LogRecord to the logging queue

4.4.each time interval the log writer thread

4.4.1.access the head of the logging queue:

4.4.1.1.if the first element is older than a configured amount of time write the log info to file

and pop it from the queue, passing to the next

5.When log file changes:

5.1. Publish a last LogRecord telling that the log file is being changed

5.2. Flushes the content of the logging queue to file
5.3. Close the old log files and open the new ones

2.2.7 Log Files formats
In a working environment the generated log files will look like the following ones: the first one is the

generated system log file (defaults to /archive/events/acs.log) where you can see a Trace message

generated by ACS code and a Debug message generated using the IRA macros.

<Trace TimeStamp="2012-06-28T14:31:37.067" File="acsncSupplierImpl.cpp" Line="459"
Routine="Supplier::subscription_change" Host="hannibal.med.ira.inaf.it" P

rocess="LoggerContainer" Thread="ORBTask" Context="" SourceObject="LoggerContainer-
GL"></Trace>

<Debug TimeStamp="2012-06-28T14:31:49.203" File="CustomLoggerImpl.cpp" Line="241"
Routine="CustomLoggerImpl::emit_log" Host="hannibal.med.ira.inaf.it" Proce

ss="LoggerContainer" Thread="ORBTask" Context="" SourceObject="MANAGEMENT/
CustomLogger"><![CDATA[our debug message]]><Data Name="source"><![CDATA[custom]]
></Data></Debug>

the second one is the custom log file (defaults to /archive/logs/station.log) generated at the

corresponding time. This log file will be presented to the user and contains only the information

unrelated to the underlying ACS logics, originated by IRA developed software. Note that the Trace

event has been discarded and the log records have a different format according to:

YEAR-DOY-HH:MM:SS:mmm LOGLEVEL THE LOG MESSAGE

where the timestamp and the log level are the first two words of each line separated by a whitespace,

while the log message comprehends all of the following words, 0 or more.

2012-178-12:53:28.198 Info addSubscription - CustomLoggingData

ESCS logging
 12

2012-180-14:31:49.203 Debug our debug message
2012-180-14:32:01.013 Notice Main - log event nr: 0

ESCS logging
 13

2.2.8 CustomLogger UML class diagram

ESCS logging
 14

2.3 Python Logging
An important feature for our logging module is being able to collect log events generated by ACS

clients written in the python programming language. An IRAPy python package has been created

within the IRA libraries in Common/Libraries/IRALibrary/src/IRAPy to contain the custom IRA libraries

developed for ACS

2.3.1 Affected files
• Common/Libraries/IRALibrary/src/IRAPy/__init__.py

• Common/Libraries/IRALibrary/src/IRAPy/customlogging.py

2.3.2 Custom Python Logger
A new logger class CustomLogger is defined in the customlogging module which inherits from

Acs.Common.Log.Logger and redefines its log method adding the extra field “source=custom” in

the LogRecord structure.

A new method getLogger is defined in the module which returns the specified logger. Using this

logger with its logging method results in custom log records being generated and correctly filtered by

the CustomLogger component, as suggested by the module execution method, which can be used

for testing purposes:

if __name__ == '__main__':
 logger = getLogger("IRA_CUSTOM_LOGGER")
 logger.logDebug("Custom DEBUG message")
 logger.logWarning("Custom WARNING message")
 logger.logInfo("Custom INFO message")
 logger.logAlert("Custom ALERT message")
 logger.logCritical("Custom CRITICAL message")

2.3.2 Proposed ACS patch
For this technique to work we would need to modify the Acspy package according to the following

patch:

--- ACS/LGPL/CommonSoftware/acspy/src/Acspy/Common/ACSHandler.py 2010-03-27
17:46:49.000000000 +0100

+++ ACS/LGPL/CommonSoftware/acspy/src/Acspy/Common/ACSHandler_patched.py
2012-04-19 11:20:59.000000000 +0200

@@ -280,6 +280,10 @@

 # Put remaining keyword arguments into NVPairSeq
 data = []
+ #Patch by Marco Bartolini - bartolini@ira.inaf.it

ESCS logging
 15

mailto:bartolini@ira.inaf.it
mailto:bartolini@ira.inaf.it

+ if hasattr(record, "data"):
+ for _k, _v in record.data.iteritems():
+ data.append(ACSLog.NVPair(_k, _v))

 if 'priority' in record.__dict__:
 # The more exotic log functions have priority keyword arguments

The patch has been proposed to the ACS mailing list but it has not been taken into account.

2.3.3 Default python logger usage
Not being able to use the previous patch we opted for a second solution, creating a default logger
instance in the IRAPy package initialization and giving it a standard name against which the

CustomLogger filter function will match positively. Thus using the custom logging capabilities within

our own python code will result in a code like this:

from IRAPy import logger
#import IRAPy

logger.logInfo(“our custom info message”)
#IRAPy.logger.logInfo(“our custom info message”)

which will generate the two following log messages in the system and custom log files:

<Info TimeStamp="2012-06-28T14:32:24.055" File="customlogging" Line="36"
Routine="Unknown" Host="hannibal.med.ira.inaf.it" Process="IRA_CUSTOM_LOGGER"
Thread="MainThread" Context="" SourceObject="IRA_CUSTOM_LOGGER"><![CDATA[Main -
our custom info message]]></Info>

and

2012-180-14:32:24.055 Info Main - our custom info message

3. Logging Client
In order to immediately visualize the log messages generated by our custom logging system and

published on the CUSTOM_LOGGING_CHANNEL a GUI client has been implemented which

subscribes to the channel and presents the records to the user.

ESCS logging
 16

3.1 Affected files
• Common/Clients/CustomLoggingClient/src/loggingDisplay

• Common/Clients/CustomLoggingClient/src/_gui_customLoggingClient.py

• Common/Libraries/IRALibrary/src/IRAPy/bsqueue.py

3.2 Usage
The application consists of a python process which implements a consumer of the

CUSTOM_LOGGING_CHANNEL notification channel and displays the received log records in a

Tkinter window. The GUI is really simple and does not offer many functionalities beyond the realtime

log visualization.

The application can be launched as:

user@host:/path$ loggingDisplay

which will open the following window where the log events will be visualized:

ESCS logging
 17

4. Logging utilization guidelines
The custom logging system should be used whenever the developer want some information to be

raised from the code up to the custom logging channel and the custom log file. These log records will

be made available to the end users of the control system, so the relating channels should be used

only in circumstances where informations relevant to the end users must be presented.

Log levels defined in our modules represent an identical hierarchy as those defined by ACS logging

system, which are described in full detail in the document Logging and Archiving that can be found

on ESO webs i te a t h t tp : / /www.eso.org/pro jec ts /a lma/deve lop/acs/On l ineDocs/
Logging_and_Archiving.pdf . In its revision 1.36 , dated 2007-07-30 , log levels are described at pag.

17 - 18. We report the levels here for sake of completeness:

Info Log Entry
Info log level is used to publish information of interest during the normal operation of the system. This

information is directed to operators, engineers or anybody else working with the system. They can

also be employed for transmitting useful payload (such as archiving data). An info log entry (<Info>)

corresponds to submitting a log entry of type LM_INFO.

Notice Log Entry
Notice logs are useful for logging normal, but significant activity of the system, for example startup or

shutdown of individual services. They are used to catch the attention of people (normally operators or

software engineering) looking at the logging output. They denote important situations in the system,

but not necessarily error/fault conditions. A NOTICE logging level should be selected with care,

because many NOTICE messages weaken the attention of the reader. A notice log entry (<Notice>)

corresponds to submitting a log entry of type LM_NOTICE.

Warning Log Entry
Warning logs are used to report to readers (normally operators or software engineering) conditions
that are not errors but that could lead to errors/problems. A WARNING logging level should be

selected with care, because many WARNING messages weaken the attention of the reader. A

warning log entry (<Warning>) corresponds to submitting a log entry of type LM_WARNING.

Error Log Entry
Error logs denote error conditions. They are normally generated by the Error System and not explicitly

use in applications by calling the logging API An error log entry (<Error>) corresponds to submitting a

log entry of type LM_ERROR.

ESCS logging
 18

http://www.eso.org/projects/alma/develop/acs/OnlineDocs/Logging_and_Archiving.pdf
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/Logging_and_Archiving.pdf
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/Logging_and_Archiving.pdf
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/Logging_and_Archiving.pdf

Critical Log Entry
Critical logs denote an Alarm condition that shall be reported to operators. They are normally

generated by the Alarm System and not explicitly use in applications by calling the logging API. A

critical log entry (<Critical>) corresponds to submitting a log entry of type LM_CRITICAL.

Alert Log Entry
Alert logs denote an Alarm condition that shall be reported to operators. This denotes a problem more
important than Critical. They are normally generated by the Alarm System and not explicitly use in

applications by calling the logging API An alert log entry (<Alert>) corresponds to submitting a log

entry of type LM_ALERT. Alerts are used for reporting errors that must be solved immediately.

Emergency Log Entry
Emergency logs denote an Alarm condition of the highest priority. They are normally generated by the

Alarm System and not explicitly use in applications by calling the logging API. An emergency log entry

(<Emergency>) corresponds to submitting a log entry of type LM_EMERGENCY. Alerts are used for

reporting errors that must be solved immediately.

4.1 Log Message Format
The custom log file will be formatted as explained in 2.2.7 but we still have to define some rules to be

used while filling the message part of the log record. In order to obtain some uniformity in the log

informations, developers should try to adopt the following convention:

• Messages are all lowercase.

• Never mention the log level itself in the log message. i.e. in an error message there’s no need to say

“communication error” , this information is already contained in the log level. Developer should

instead try to explain what caused the error, i.e. “connection reset by peer”.

• Data can be included in the message body within square brackets at the end of the message, i.e.

“antenna pointing at the source [az=44.5, el=18]” . Data must be named parameters, separated by

comma.

• Square brackets should be used only for data.

• As a general rule, messages are more effective when presented in the form: subject + verb +

complement.

ESCS logging
 19

